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ReceiVed: October 16, 2000; In Final Form: January 3, 2001

The intermediate and long-range behavior of the three lowest doublet potential energy surfaces for the F(2Pj)-
H2 and Cl(2Pj)-H2 systems has been studied, using a harmonic expansion of the potential, where the dependence
on the relative orientation of the half-filled orbital of the open-shell atom and the molecular axis has been
given in terms of bipolar spherical harmonics, whereas the coefficients modulate the effect of the variation
of the intermolecular distance. The contribution of van der Waals, electrostatic, and charge-transfer interactions
to the strength and the intermolecular distance dependence of each radial term are derived from previous
molecular beam scattering experiments and from correlation formulas. The latter provide the link of these
quantities to basic properties of the interacting partners. Besides describing elastic and inelastic channels,
these surfaces also provide accurate information on the entrance channel for reactions.

I. Introduction

Chemical reactions and many inelastic processes typically
involve open-shell species, which play a crucial role in the
chemistry of atmospheres, plasmas, and lasers;1 their interactions
are described by a manifold of potential energy surfaces, among
which nonadiabatic transitions occur and spin-orbit coupling
may be operative. This is also of increasing modern relevance
in view of the interest of ultracold collisions for astrophysical
and Bose-Einstein condensation studies.2

Typical open-shell species can be atoms, free radicals,
molecules such as NO, or atomic and molecular ions. Their
interactions with closed shell molecules are weak (of the order
of magnitude of 1 kcal/mol) and manifest from large (tens of
Å) down to intermediate (a few Å) intermolecular distances. In
this range, both the attractive interaction (due to dispersion,
induction and charge transfer contributions) and the tail of the
repulsion (determined by the size of the two partners) are
operative. Electrostatic effects arise when permanent multipoles
are present on both interacting partners; they often vanish when
averaged over the spatial orientations of particles, but crucially
affect the anisotropic part of the interaction.

Because of the small overlap of the electronic clouds, such
interactions are unable to induce an appreciable modification
in the internal structure of the involved species but can strongly
affect the collision dynamics at thermal energies (e10 kcal/
mol), defining the nature of steric effects which control the
selectivity of chemical and physical elementary phenomena and
determining transport and energy transfer processes which occur
in various environments. These interactions depend on the
relative orientation of the two partners, on the intermolecular
distance and on coordinates defining the internal structure of
the system: they are elusive to quantum chemistry and are
known to an accuracy level often insufficient to adequately
assess their influence on collision dynamics.

In this work, we consider the interactions of F(2Pj) and Cl(2Pj)
atoms with the H2 molecule, which are prototypes of open-
shell atom-homonuclear diatomic molecule cases. These
systems have been the object of many experimental (reaction
rate constants,3-5 elastic, inelastic, and reactive cross sections6-18

and photoelectronic spectroscopy measurements19-23) and theo-
retical studies (ab initio potential energy surfaces24-34 and
reaction dynamics).14,35-44

Despite this long (and admittedly partial) list of references,
the available results on the interaction from ab initio, semiem-
pirical and empirical methods, are still unable to simultaneously
reproduce all the existing experimental data. Three potential
energy surfaces, two of A′ and one of A′′ symmetry, must be
considered to describe the evolution of the chemical reaction
or of the energy exchange in the case of inelastic collisions.
Theoretical information is especially precious for the description
of the features of the ground potential energy surface in the
neighborhood of the reaction transition state: this region mostly
affects reactive scattering. The role of excited surfaces has been
often neglected, and the intermediate and long-range behavior
of the potential energy is known to a level of accuracy
insufficient to satisfactorily account for experimental data such
as elastic8,10 and inelastic cross sections.11,15,17The most recent
ab initio potential energy surface for F+ H2

32 appears to
accurately reproduce many details of the reaction dynamics but
a realistic entrance valley with possible refinements of the strong
interaction region is required by new experiments.17 For this
system, some relevant attempts have been made in the past in
combining ab initio and experimental information,29,30but they
have been insufficient to adequately represent the long and
intermediate range of the interaction.15,17Also, for the Cl+ H2

system, the importance of shallow wells located at intermediate
intermolecular distance in the reactant and product valleys has
been recently pointed out.44

The investigation and the application of a suitable representa-
tion for the asymptotic and intermediate behavior of the† Part of the special issue “Aron Kuppermann Festschrift”.
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interaction in halogen atom- hydrogen molecule systems is
one of the aims of this work. A spherical harmonic expansion
is particularly convenient for this purpose: while the first term
provides the isotropic component, higher order terms are
required to account for the role of molecular anisotropy and
atomic electronic orbital alignment. A special effort has been
made to establish the nature of each radial coefficient of the
expansion in order to assess its strength and its explicit
dependence on the intermolecular distance.

The interaction potential expansion and the representation of
the potential energy surfaces developed in this paper are an
extensionsincluding the role of fine structure effects and of
nonadiabatic couplingssof the theory previously presented to
describe bending levels in the P atom-linear molecule
complexes.45-48 For use of these potentials for reactive scattering
calculations, see for example Ref 49. This work is also a
generalization of the approach based on alternative angular
momentum coupling schemes for the quantum mechanical
treatment of collisions between atoms carrying spin and
electronic angular momentum,50,51to take into account the effect
of molecular orientation.

Formulas given in the following have been derived consider-
ing the2P character of the halogen atom and the nearly spherical
shape of the H2 molecule, considered as a rigid molecule frozen
to the equilibrium distance. The method is currently being
extended to other relevant cases, such as2P atom-homonuclear
diatom more anisotropic than H2, 2P atom-heteronuclear
diatom,3P or1 D atom-diatomic molecule and also to systems
including atomic and molecular ions. The proposed potential
expansions provide the features of the potential energy surfaces
for the F(2Pj)-H2 and Cl(2Pj)-H2 systems, which are relevant for
collision dynamics calculations of elastic and inelastic processes
occurring in the entrance channel of chemical reactions.

The present approach, which generates simultaneously both
the ground and the lowest excited potential energy surfaces,
provides a starting point to obtain the interaction in wider
distance and orientation ranges, including possible molecular
rearrangements leading to chemical reaction. For such develop-
ments, which involve the inclusion of the dependence of the
bond stretching of the diatom, see Ref 52.

The paper is organized as follows: In Section II, the
interaction potential expansion is presented, and the physical
meaning of each radial term and its relation with the specific
components of the interaction is discussed. Diabatic and
adiabatic representations of the potential energy surfaces and
the treatment of the nonadiabatic couplings are reported in
Section III. In Section IV, the obtained results are shown,
together with some comparisons between our results and the
most recent and accurate ab initio potential energy surfaces.
Discussion and conclusions follow in section V.

II. Harmonic Expansion: Role and Nature of the Radial
Coefficients

A. Expansion. We develop our treatment with reference to
a body-fixed frame where the quantization axis lies along the
Jacobi vector RB, joining the atom to the center-of-mass of the
molecule. The molecular axis rb is oriented as rˆ ) (θ, φ) and the
orientation of the half-filled orbital of the open-shell atom is
given by r̂e ) (θe, φe). As can be seen from Figure 1, the
problem is similar to the rotor-rotor model often employed
for describing collisions of diatomic molecules. The formulation
can also be presented exploiting such a similarity. Accordingly,
the potential is expanded in a series of bipolar spherical

harmonics, representing the angular dependence, and radial
coefficients, which will be related to specific components of
the atom-molecule interaction

Here, the bipolar harmonicsyl1l2

l120 are a linear combination of
normalized spherical harmonics

where〈...|..〉 is a Clebsch-Gordan coupling coefficient. In (2),
l1 and l2 are angular momentum-like quantum numbers,l12 is
their sum, andµ runs as their projection along the intermolecular
axis RB. Ranges for the integersl1 and l2 will be related to the
physically relevant molecular rotational and electronic orbital
atomic states and will have to be restricted according to
symmetries of the system.

The coefficients in expansion (1) are parametrical inR and
r. In the following, we illustrate the case in which the molecular
internuclear distancer is frozen at the equilibrium value (0.74
Å for H2), so that any specific dependence on r will be omitted
in the following. Such dependence has to be explicitly taken
into account to describe reactions and vibrational excitations
(negligible for H2 collisions at thermal energies). For homo-
nuclear molecules, only evenl1 values are permitted by the
potential symmetry, while both even and odd terms are
necessary to describe the case of heteronuclear diatoms. The
number of terms requested by the expansion convergence
depends on molecular anisotropy. For H2, an expansion withl1
) 0, 2 will be adopted to represent the molecular anisotropy.53,54

As for l1, the expansion for a P-state atom, such as F and Cl,
will include l2 ) 0, 2, (l2 ) 4 is needed for a D atom,...50). This
is sufficient to describe fine-structure, as long as configuration
interactions to higher states is small. The potential must be
invariant under the inversion of all the coordinates, and this
symmetry limits the expansion in (1) to even values ofl1 + l2
+ l12. As a consequence,l12, corresponding to the coupling of
the first two, is also even.

B. Radial Coefficients.An important target of the present
analysis is to find a proper correspondence among the radial
coefficient Vl1l2

l12 (R), introduced in eq 1, and the various
components of the interaction, arising from dispersion, induction,
electrostatic, charge-exchange effects, and also with repulsion,
due to atomic and molecular sizes. Such a correspondence
permits to obtain, for the prototype F(2Pj)-H2 and Cl(2Pj)-H2

Figure 1. Illustration of a P-state atom-diatomic molecule interaction
exploiting analogy with rotor-rotor case. Signs of quadrupolar moments
are also indicated. The picture applies to the halogen atom-hydrogen
molecule interaction.

V(R,r,r̂,r̂e) ) ∑
l1,l2,l12

Vl1l2

l12 (R,r) yl1l2

l120(r̂,r̂e) (1)

yl1l2

l120(r̂,r̂e) ) ∑
µ

〈l1l2µ - µ|l120〉 Yl1µ
(r̂)Yl2-µ(r̂e) (2)
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systems, these crucial quantities from experimental information
or from correlation formulas, which provide the main features
of each interaction component in terms of fundamental physical
properties of the interacting partners. In the following, a brief
discussion about the role and the nature of each radial coefficient
in open-shell atom-homonuclear diatom system is presented.
Their explicit parametric form for the F-H2 and Cl-H2 cases
is given in the Appendix.

TheV00
0 coefficient describes the spherical component of the

interaction: it corresponds to that which is left after averaging
on the relative orientation of the half-filled orbital of the open-
shell atom and of the molecular axis. TheV20

2 term defines the
change in the interaction due to different orientation of the
molecule, taking the partner as a spherical atom, whereas the
V02

2 coefficient is related to the anisotropy due to the different
possible orientations of the open-shell atom, the molecular
partner being this time considered as a spherical particle. The
other termsV22

0 , V22
2 , andV22

4 emphasize the role of anisotropy
effects arising from different relative positions of the open-shell
atom with respect to the molecule: it is sufficient to average
over the permitted orientations of a single partner to vanish their
role.

Integral cross section measurements carried out for both
F(2Pj)-D2

8 and Cl(2Pj)-D2 systems,10 maintaining the target
hydrogen molecule at sufficient high rotational temperature and
using state-selected halogen beams, have provided direct
information on the spherical components (V00

0 ) and on the
anisotropy associated with atomic orbital alignment effects
(V02

0 ).
The main features found8,10 for the spherical component of

the interaction, such as the depth and the position of the potential
well, agree with the predictions based on empirical formulas,55,56

which establish a correlation with the mean polarizability of
the interacting partners. The agreement, also found for many
other cases, suggests for such a term a typical van der Waals
nature, being irrelevant contributions such as those due to
electronic angular momentum couplings and charge exchange.
(A method for the evaluation of these terms, also extended to
include the case of atomic and molecular ions, has been given
in Refs 55 and 56.) Accordingly, as reported in the Appendix,
we adopted forV00

0 (R) a standard parametrization for van der
Waals forces and used the experimentally determined param-
eters.

In systems involving open-shell atoms or ions with high
electron affinity, as the present ones, theV02

2 component,
associated with the alignment effects of the half-filled orbital
of the open-shell atom, is mainly determined by charge-
exchange effects, whereas van der Waals anisotropic contribu-
tions are less important except at large intermolecular distances.
Charge-exchange effects basically depend on the overlap integral
between orbitals describing the electron before and after the
jump and on the energy splitting between involved states.57 Their
importance increases when the intermolecular distance,R,
decreases and crucial is the role of the orientation of the atomic
half-filled orbital. In the present cases, theRdependence of the
V02

2 term has been modeled as in Refs 8 and 10 by the
combination of a decreasing exponential, accounting for the
variation of the overlap integral, with an R-6 term, associated
with the contribution of van der Waals nature arising from the
halogen polarizability anisotropy. Also for theV02

2 coefficient
we have used the experimentally determined parameters. More
details are given in the Appendix.

To put this approach in a proper perspective, we note that
recently particular attention has been devoted in our laboratory
to the characterization of the charge-transfer role in the bond
stabilization in systems involving halogen, oxygen and sulfur
atoms, and in symmetric and asymmetric rare gas ionic dimers,58

at the crossings between ionic and covalent states59 and in the
proton affinity.60 This study has led to a general correlation
formula, given in terms of polarizability of the involved partners,
electron affinity of the electron acceptor and ionization potential
of the donor, which interpolates the behavior observed in several
cases and permits to predict strength and distance dependence
of this component for a variety of systems.60

TheV20
2 radial coefficient describes the anisotropy due to the

different orientations of the molecule in the complex. This term,
of van der Waals nature, arises from the combination of a
contribution due to the modifications in the molecular size
dominating at short range, and of a component describing the
variation of the attractive forces. This component prevails at
large R and is expected to be mainly determined by the
anisotropy of the molecular polarizability. The first term has
been represented by an exponential function, whereas the second
behaves asR-6.61 To define the parameters ofV20

2 for F-H2

and Cl-H2, we have used the criteria given in Refs 53 and 54,
where the behavior of the analogous terms for the “similar”
Ne-H2 and Ar-H2 systems, has been experimentally character-
ized with great detail. Such a “similarity” comes from the very
close value of the isotropic component of the polarizability of
F and Cl atoms (0.56 and 2.18 Å3) with those of Ne and Ar
(0.40 and 1.64 Å3).62

Also for these components of the interaction, we note that a
recent extension of correlation formulas for van der Waals forces
allows to predict their anisotropic character, both in the attractive
and the repulsive region, in terms of the anisotropy of the
molecular polarizability.63 When atomic ions are involved this
term must include further effects, due to ion-molecule quad-
rupole interaction.64

The V22
0 andV22

2 coefficients must be thought as corrective
terms to the previously analyzedV20

2 and V02
2 . Their physical

meaning is less definite because they account for the modulation
of charge exchange effects and van der Waals forces by a
simultaneous variation in the orientation of the P atom and the
diatomic molecule. Being higher order terms, they are expected
to be small. In the present work, we represent them as decreasing
exponential functions estimated from the behavior of similar
terms in diatom-diatom systems such as N2-N2

61 and O2-
O2.65

A most important and specific role is played by theV22
4

coefficient, which describes the electrostatic interaction between
the permanent quadrupoles of the atom and of the molecule.
This term, which varies asR-5, can be evaluated accurately
because the quadrupole moment of H2 is known66 and that of
the halogen atom can be given in terms of the mean square
radius of the valence electrons (see Appendix).45 For the present
systems, in the∑ electronic state, one expects a marked
repulsive effect for a linear complex, and a strong attraction
for the bent geometry. The effect is smaller and opposite in the
Π electronic states. Such an interaction is expected to play a
crucial role in the intermediate intermolecular distance range
affecting rotational inelastic collisions at thermal energies.11,15,17

III. Potential Energy Surfaces

The potential expansion given in eq 1 allows us to factorize
the relative role of the components of the interaction for open-
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shell atom-diatomic molecule systems and to model them using
experimental information and correlation formulas. Dynamical
calculations require a proper representation of the potential
energy surfaces characterizing the investigated system. To do
this, a suitable electronic basis must be chosen to give, after
integration over the electronic coordinates, a diabatic representa-
tion of the potential energy surfaces, including atomic fine
structure effects. Some alternative possibilities will be explored
below. Then, adiabatic states can be obtained by diagonalization
of the potential matrix. Such representations of the surfaces as
a function of the nuclear variablesR andθ (all the electronic
features having been included in them) will be presented and
illustrated in view of their exploitation for dynamical calcula-
tions.

To this aim, let us introduce “mixed” coefficientsVl2µ(R,r̂)
(i.e., depending on bothR and θ) in terms of which the
interaction potential reads

These terms are obtained as an alternative coupling scheme from
the radial coefficientsVl1l2

l12 of eq 1

It should be noted that the form of the potential in eq 3 can be
considered as a generalization of the expansion familiar for
open-shell closed-shell atom- atom interactions (see Ref 50).
Accordingly, the description of the systems must be completed
by considering the fine structure of the open-shell atom,
represented by a phenomenological operator

whereδ will be empirically taken as the spin-orbit splitting of
the open-shell atom, specifically 50.1 meV for F and 109.4 meV
for Cl. In (5), L̂ and Ŝare the electronic orbital and spin angular
momentum operators, respectively.

A. Diabatic Representation.Here, we focus on the electronic
basis functions of the halogen atom, which in the treatment
carried out so far depend on angular coordinates which
individuate the orientation of the half-filled orbital of the open-
shell atom, and as well exhibit a dependence on the spin
coordinate of the unpaired electron. Alternative representations
are possible, the simplest option being an electronically diabatic
basis YLΛ(θe,φe) XS∑(σ), whereσ is a spin coordinate. In the
following, we will indicate the electronic functions by the
Hund’s case (a) notation|ΛΣ〉 (for a 2P atomΛ ) 0, ( 1 and
Σ ) ( 1/2). Parity is not introduced explicitly: its effects will
be seen later by the splitting of the basis set. This latter is an
atomic uncoupled basis in which the spin-orbit operator has
both diagonal and off-diagonal elements

The potential matrix, whose elements can be indicated as
〈 Λ Σ | V + Hso| Λ′ Σ′〉, after the integration over all the

electronic coordinates, is real and symmetric and can be cast in
the following form

where

and

The termsVl2µ(R,r̂) in the last two equations have been defined
in eq 4. The structure of the potential matrix allow us to apply
a unitary transformation which brings the matrix into a factorized
form, with two 3 × 3 blocks. Such a transformation can be
written in explicit form as

where1 is the 3× 3 unit matrix. The application ofU to the
complete potential matrix, as already stressed, makes the original
matrix a factorized one having the following structure

Each of the two blocks of dimension 3× 3 is Hermitian.
They have real and coincident eigenvalues, so that it is sufficient
to proceed taking into account only one of the blocks.

Because the spin-orbit operator is not diagonal in the
uncoupled basis| Λ Σ 〉, a transformation to a diagonal form
can be made using Clebsch-Gordan coupling coefficients to
obtain the Hund’s (c) case coupled basis| j Ω 〉

Here,j is the total electronic angular momentum of the atom (j
) 3/2 and j ) 1/2) and Ω its projection on the intermolecular
axis RB of the chosen rotating frame (phases and parity are here
ignored for simplicity, see e.g., Ref 50).

As a consequence of this transformation, the following
diabatic representation of the potential energy matrix is obtained

V(R,r̂,r̂e) ) ∑
l2µ

Vl2µ(R,r̂) Yl2-µ(r̂e) (3)

Vl2µ(R,r̂) ) ∑
l1l12

〈l1l2µ - µ|l120〉 Vl1l2

l12 (R) Yl1µ(r̂) (4)

Ĥso ) - 2
3
δ L̂‚Ŝ (5)

〈 Λ Σ | L̂‚Ŝ | Λ Σ 〉 ) Λ Σ

〈 Λ Σ | L̂‚Ŝ | Λ ( 1 Σ - 1 〉 )

1
2

[L(L + 1) - Λ(Λ ( 1)]1/2 [S(S+ 1) - Σ(Σ - 1)]1/2 (6)

W ) (A -B
B A ) (7)

A )

(V00 + 2
5
V20 0 x2/3 δ

0 V00 - 1
5
V20 - δ/3 -

x6
5

V22

x2/3 δ -
x6
5

V22
V00 - 1

5
V20 - δ/3

)|01/2〉

|-1-1/2〉

|1-1/2〉
(8)

B ) ( 0 x3
5

V21 -
x3
5

V21

-
x3
5

V21
0 0

x3
5

V21
0 0

)|0-1/2〉

|11/2〉

|-11/2〉

(9)

U ) 1

x2
(1 1
-i1 i1) (10)

U† W U ) (A + iB 0
0 A - iB ) ≡ (V 0

0 V* ) (11)

| jΩ〉 ) ∑
ΛΣ

〈LSΛΣ | jΩ〉 | ΛΣ〉 (12)
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where the signs+ and- givesV andV*, respectively.
B. Adiabatic Representation. The diagonalization of the

diabatic potential matrix provides the electronically adiabatic
eigenstates, i.e., the expression of the potential energy surfaces
for the investigated systems as a function ofR and of the
bending angleθ. This involves the solution of a secular cubic
equation: the corresponding roots represent the electronic
adiabatic states, directly comparable with the Born-Oppenhe-
imer potential energy surfaces as obtained in an ab initio
calculation. The obtained surfaces correlate asymptotically with
the spin-orbit states2Pj (j ) 3/2 and1/2) of the halogen atom.

The opposite limit would be when fine structure effects can
be neglected, and the intermolecular interaction dominates. In
such a case, the potential matrix resulting by integration over
the spatial electronic coordinatesθe andφe can be factorized
into two mono- and bidimensional submatrices corresponding
to the A′′ and A′ symmetries typical of a triatomic system

This latter is the same matrix obtained by Dubernet and Hutson45

using directly a spin-free atomicp-orbital basis. Eigenvalues
in this representation can be explicitly obtained, and the
electronic states correlate with the barycenter of the asymptotic
state2P of the isolated atom.

It should be noted that the atomic p-orbital set is a diabatic
basis. However, at the linear geometry, the termsV21 andV22

vanish because the correspondent spherical harmonics are zero,
so that the potential matrix on the given basis is diagonal there.
Such a configuration allows us to identify the electronic states
with the labelΛ corresponding to the projection along RB of the
total orbital angular momentum LB (Σ and Π are the usual
notation forΛ ) 0 and(1, respectively)

The matrix (14) is diagonal also in the other limiting case, i.e.,
for the T-shape configuration of the three atoms corresponding
to θ ) π/2. In the limit of a perpendicular geometry, the
potential curves can be labeled with the irreducible representa-
tions (A1, B1, B2) of the C2ν symmetry group to which the
triatomic complex belongs. For all the intermediate geometries

between the collinear and the perpendicular limits, covered by
the range of the possibleθ values between 0 andπ/2, the
surfaces are identified by the symmetry representations of the
Cs group, 1 A′, A′′, and 2 A′, respectively. These latter, arising
from the solution of the simple secular problem in eq 14, are
the adiabatic potentials which are presented and illustrated in
Section IV.

C. Nonadiabatic Couplings.In the adiabatic representation,
nonadiabatic coupling terms arise. Providing a functional
expression of such couplings, which play a significant role in
the dynamics, will be the focus of this section.

The treatment will refer to the spin-free p-orbitals atomic
basis, a choice which involves no loss of generality. Only the
x and z components will be considered, thepy orbital being
uncoupled by symmetry. We have already stressed that the
p-orbitals are a diabatic basis set (see eq 14), providing a
nondiagonal representation of the potential matrix. To obtain
the electronic adiabatic eigenstates of A′ symmetry, which will
be denoted asφ1 and φ2, a two-dimensional orthogonal
transformation on this set must be performed

where γ is the mixing angle dependent on the internal
coordinatesR andθ for the upper block in eq 14

Here, nonadiabatic terms, due to the interaction between the
two electronic states induced by the nuclear motion will be
examined, the fine structure effects having been already taken
into account (Section III.A). A functional expression is found
for the quantities

Obviously, they will show a dependence on both coordinates,
as one can deduce looking at the expression (17) of the mixing
angleγ used for the transformation of the diabatic basis to an
adiabatic one. The 1/Rscaling ofPθ brings it into units suitable
for comparison. In the next section, we will proceed showing
some plots of these nonadiabatic couplings terms in order to
give an insight of their trends.

IV. Results

The spherical harmonic expansion discussed in Section II,
which makes use of the radial coefficients whose parameters
are reported in the Appendix, and the representations of the
interaction discussed in Section III, permit to generate the three
lowest potential energy surfaces for F(2Pj)-H2 and Cl(2Pj)-H2

systems. In this section, a pictorial representation of the obtained
results will be given, together with some comparison with recent
ab initio surfaces.32,34 We first refer to the p-orbital basis
introduced in Section III to focus the attention on the principal
components of the interaction, and then introduce the effects
due to spin-orbit, presenting some cuts of the surfaces for both
investigated systems as a function of one of the two nuclear
variablesR andθ, for fixed values of the other one.

V00 1 + 1
3 ( 0 - 2x3

5
V22 - 3x2

5
V20

- 2x3
5

V22
- 3

5
V20 - 3x2

5
V22

- 3x2
5

V20 - 3x2
5

V22

3
5
V20

) (

i ( 0
1
5
V21 -

x3
5

V21

- 1
5
V21 0 +

x2
5

V21

x3
5

V21 -
x2
5

V21
0 ) + δ (23 0 0

0 - 1
3

0

0 0 - 1
3

) (13)

V00 1 + 1
5 (2V20 x6V21 0

x6V21 -V20 + x6V22 0

0 0 -V20 - x6V22
)pz

px

py

(14)

VΣ ) V00(R,0) + 2
5
V20(R,0)

VΠ ) V00(R,0) - 1
5
V20(R,0) (15)

(φ1

φ2
) ) (cosγ -sin γ

sin γ cosγ )(px

pz
) (16)

γ(R,θ) ) 1
2

arctan
2x6V21

-3V20 + x6V22

(17)

PR(R,θ) ≡ 〈φ1| ∂

∂R
|φ2〉 ) ∂γ

∂R
(18)

Pθ(R,θ) ≡ 1
R

〈φ1| ∂

∂θ
|φ2〉 ) 1

R
∂γ
∂θ

(19)
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The adiabatic curves for the F(2Pj)-H2 system, in the two
limiting nuclear configurations (corresponding toθ ) 0 andθ
) π/2), are plotted as a function ofR in Figure 2.

In the C∞ν symmetry (collinear geometry), the diabatic
electronic states can be labeled in terms of projectionsΛ ) 0
(Σ), and( 1 (Π) of the orbital electronic angular momentumL
) 1 along the intermolecular axisR. The correspondingΣ and
Π states cross atR≈ 2.9 Å, and the second one is energetically
lower at long-range. The ground state exhibits a potential well
with a minimum location at 3.4 Å and a depth of about 5 meV.
Uncertainties are of the same magnitude as given in Ref 8. The
observed sequence can be explained by invoking the quadru-
pole-quadrupole interaction between the atom and the molecule.
It should be noted that the twoΠ curves coalesce as expected
because of the same relative orientation of the half-filled orbital
of the open-shell atom-molecule in the two cases. The adiabatic
states are very close to those in the diabatic representation except
for the effect of the avoided crossing.

In theC2ν symmetry (perpendicular geometry) the curves are
labeled by the irreducible representations A1, B1, and B2 of the
symmetry group of the triatom. The ground state, corresponding
to A1 symmetry exhibits a well with a minimum at 2.7 Å and
a depth of about 20 meV. Near fully repulsive curves correspond
to B1 and B2 states; they are slightly split at all intermolecular
distances because of differences in the relative orientation of
the half-filled orbital of the halogen with respect to the molecule.

Figure 2 also includes theθ-couplingPθ at θ ) 0 andπ/2,
the R-coupling PR being everywhere zero for such limiting
geometries. In the collinear geometry,Σ andΠ states cross at
R about 2.9 Å or, in the adiabatic picture, the two A′ states
exhibit for such a distance an avoided crossing. Nonadiabatic
couplings are actually peaked aroundR≈ 2.9 Å, and practically
negligible elsewhere. Asθ increases, thePθ couplings mono-
tonically decrease, the peak becomes smoother and smoother

and moves toward largerR values, until the limit case shown
in Figure 2 forθ ) π/2.

Figure 3 shows corresponding results for Cl-H2 system.
Minima of the wells are located atR ≈ 3.7 Å andR ≈ 3.0 Å
for the collinear and perpendicular case, whereas depths are∼
8 and 25 meV, respectively. Again, uncertainties are of the same
magnitude as given in Ref 10. Differences with respect to F-H2

are expected to depend on the increased strength of both
attractive and repulsive interaction. Concerning the avoided
crossing at 3.2 Å and nonadiabatic couplings for this system,
all the considerations made above for F-H2 are also valid here.

The dependence of the interaction on the angular variableθ
for the ground and excited potential energy surfaces for both
systems is reported in Figure 4. The correlation between
collinear and perpendicular geometries is shown for both the
diabatic and adiabatic representations. The intermolecular

Figure 2. Relevant features of the interaction as a function of the
internuclear distanceR for the F-H2 system. (Panel a): Adiabatic
potential curves for the collinear configuration (θ ) 0) labeled in terms
of the representationsΣ andΠ of C∞ν symmetry group. Corresponding
states ofCs group are shown in parentheses. (Panel b): Adiabatic
potential curves at the perpendicular configuration (θ ) π/2) labeled
in terms of the representations ofC2ν symmetry group. As in (Panel
a), corresponding states ofCs group are shown in parentheses. (Panel
c): Nonadiabatic coupling termPθ between the A′ states for the collinear
configuration. The corresponding termPR is always zero forθ ) 0.
(Panel d): Nonadiabatic coupling termPθ between the A′ states for the
perpendicular configuration. As it happens forθ ) 0, PR vanishes
everywhere.

Figure 3. Relevant features of the interaction as a function of the
intermolecular distanceR for the Cl+ H2 system (see caption of Figure
2).

Figure 4. Relevant features of the interaction as a function of theθ
orientational angle at fixedR for both investigated systems. Upper
panels: Adiabatic potential curves (continuous curves) as a function
of θ, atR ) 3.0 Å. The correlation between symmetry representations
in the two limit cases (C∞ν and C2ν correspond to the linear and
perpendicular configurations, respectively) is shown. Also diabatic states
(dashed lines) have been reported. Differences in the correlation
diagrams are due to the fact that the chosen distance is larger than the
avoided crossing for the F-system, but lower for the Cl-system. Lower
panels: Non-adiabatic coupling termsPθ (dotted curve) andPR

(continuous curve).
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distanceRhas been fixed at 3.0 Å to allow a proper comparison
with results of Ref 32 for F-H2. This distance is larger than
the avoided crossing distance for the F-system, but lower in
the case of Cl, and this shows up as an apparent difference in
the correlation diagrams. Nonadiabatic couplingsPR andPθ are
also plotted as a function ofθ. Both terms seem to be more
significant in the region aroundθ < 30°. The Pθ couplings
appear smaller as compared with thePR terms except forθ )
0 andπ/2.

For the F-H2 case, the present ground potential energy
surface qualitatively agree with calculations of Stark and
Werner.32 Present data exhibit a larger anisotropy onθ angle,
and some relevant differences in theR dependence. A quantita-
tive comparison is shown in the upper panels of Figure 5. For
the perpendicular approach, the present treatment provides an
interaction energy more attractive at long distances but much
more repulsive whenR decreases. In the intermediate region,
the balance of the two components of the interaction produces
a deeper well localized at a larger distance. In the case ofθ )
0, the wells have similar depth but they look very different in
the repulsive wall.

Also for the Cl + H2 system, the well depth in the
perpendicular configuration (see Figure 5, lower panels) is in
reasonable agreement with a recent ab initio calculation (about
22 meV).34 Dynamical calculations on the latter have demon-
strated that the potential well found in the entrance channel plays
a decisive role in the product distribution of the Cl+ HD
reaction.44 Relevant differences between the two surfaces appear
in the collinear geometry (θ ) 0).

Figure 6 shows, for the collinear configuration of the three
atoms, the electronic adiabatic states for both systems arising
from the diagonalization of one of the 3 by 3 blocks of the
complete potential matrix, see eq 11. Reported curves represent
the eigenvalues of (13) in the general case where both
intermolecular potential and spin-orbit coupling are included.
Curves in Figure 6 constitute then “true” adiabatic states,67-69

as they have been obtained by the complete diagonalization of
the general form of the interaction potential matrix,i.e.
accounting also for the fine structure. As noticed in section III,
such curves correlate asymptotically with the| j Ω 〉 spin-
orbit states of the halogen atom and providing more insight than
the results reported in Figures 2 and 3. In Figure 6, the2Π3/2

curve crosses the2Σ1/2 states atR around 2.9 Å for F-H2 and

at R around 3.2 Å for Cl-H2. The remaining2Π3/2 state is the
only one correlating with the2P1/2 of the halogen atom.

V. Discussion and Conclusions

In this paper, we have developed a general method to evaluate
the intermolecular potential of a diatomic molecule with an
open-shell atom in the configuration region where the collision
dynamics is controlled by intermediate (a few Å) and long-
range (tens of Å) anisotropic forces, essentially where potentials
are negative. The potential is expressed as a harmonic expansion
whose moments give the dependence of the interaction on the
intermolecular distance. For F-H2 and Cl-H2 systems relevant
contributions arise from the spherical componentV00

0 , of van
der Waals nature, from the anisotropic coefficientsV02

2 and
V20

2 , which describe effects due to atomic alignment and to
molecular orientation, and fromV22

4 component which defines
the quadrupole-quadrupole interaction (theV22

0 andV22
2 coef-

ficients represent minor contributions). The proper combination
of experimental information with the predictions of correlation
formulas provides strength and intermolecular distance depen-
dence of these components. A simultaneous description of both
ground and excited potential energy surfaces, as a function of
intermolecular distance and bending angle, has been the outcome
of our procedure and constitutes a platform for applications to
molecular dynamics. These applications require further im-
provements on the approach presented here, which has con-
cerned the introduction of spin-orbit effects and the evaluation
of nonadiabatic couplings, allowing proper description of elastic
and inelastic scattering. As for the opening of possible reactive
paths, involving the inclusion of the dependence of the potential
energy on the molecular bond length, see Ref 52.

The reported results emphasize that the H2 orientational
anisotropy is markedly different for the 1A′, 2A′, and A′′
potential energy surfaces because of the different role of the
components contributing to the global interaction. Therefore,
the rotational inelasticity is expected to be strongly dependent
on the symmetry properties of the involved potential energy
surface. Pronounced wells are present near the perpendicular
configuration: their depths (about 20 and 25 meV, respectively,
for F-H2 and Cl-H2) agree with the predictions of ab initio

Figure 5. Comparison of present results for F-H2 (upper panels) and
Cl-H2 (lower panels) in the ground adiabatic state 1A′ (solid curve)
with those of Refs 32 and 34 (dashed-dotted line). Reported cuts as
a function ofR refer to the collinear (θ ) 0) and perpendicular (θ )
π/2) geometries.

Figure 6. Adiabatic interactions including fine structure effects as a
function of R for θ ) 0. Dashed line represents2Π3/2 curve, crossing
the2Σ1/2 states atR around 2.9 Å for F-H2 and 3.1 Å for Cl-H2. The
behavior of2Π1/2 state, correlating with the2P1/2 of the halogen atom
is also shown. Asymptotic states are splitted by the atomic spin-orbit
constantδ.
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calculations,32,34,44whereas the location of the well for F-H2

is significantly larger (see Section IV).
Depths and locations of such wells could affect the collision

dynamics at least at thermal energies; this point has been
recently addressed in a paper focused on the role of the entrance
valley for the Cl+ HD reaction.44 However, detailed calcula-
tions of reactive dynamics require a complete description of
the interaction in the whole configuration space of the three
atoms. As previously discussed, our representation is appropriate
for the intermediate and long intermolecular distances both in
the entrance and exit channels, whereas it is inadequate in the
strong interaction region where the triatomic complex undergoes
a molecular rearrangement. A first attempt to carry out extensive
dynamical calculations is founded on the merging of the
potential energy surfaces determined in this paper with those
obtained fitting ab initio data which simulate accurately the
triatomic interaction in the transition state region; this matching
is required for getting the reactive path open as the intermo-
lecular distance becomes sufficiently small.

The merging of our ground surface with available ab initio
potential energy surfaces (see 39 and 52, where the new PES
of 32 has been employed) allows us to perform reactive
scattering quantum mechanical calculations for the F-H2

system. State-to-state integral and differential cross sections apex
have been calculated and compared with those from analogous
calculations carried out on the surface in Ref 32. Preliminary
comparisons with Ref 38 indicate improvement on agreement
with available experimental measurements,6 notably for the
production of the HF molecule in the final vibrational stateV′
) 3.

In conclusion, we note that the features of the proposed
potentials, originating from a critical balancing between elec-
trostatic, van der Waals and charge-transfer components, were
extracted from total integral cross sections data, measured under
high rotational temperature conditions,8,10for which orientational
effects due to the H2 molecule play a minor role. In particular,
it can be checked that averaging over the possible H2 orientations
basically the electrostatic components vanishes and one obtains
the potentials originally proposed in those papers,8,10 which
include only the van der Waals component and atomic alignment
effects (essentially charge-transfer). In addition, in both cases,
the anisotropy due to the H2 orientation appears to be much
larger than in the Ne and Ar-H2 systems, on line with what
appears to be required to describe inelastic differential cross
section data.11,15

It would be desirable to reproduce all the properties available
on such systems, including elastic, inelastic, and reactive cross
sections, by using the same potential energy surfaces. Such an
analysis should allow the determination of the relative role of
elastic, inelastic and reactive collisions as a function of the
angular momentum and of collision energy, providing also
additional information to probe fine details of the potential
energy surface in the transition state region.

Appendix: Parametrization of the Radial Coefficients

The V00
0 (R) termswhich describes spherical interaction of

van der Waals nature (see text)shas been represented by the
usual MSV (Morse- Spline-van der Waals) parametrization.8,10

Two boundary pointsR1 and R2 are chosen, and a Morse
function is used forR values smaller thanR1

whereas a van der Waals dependence is employed forR values

larger thanR2

The parametersε andRm represent the depth and the position
of the minimum, whereasâm is related to the curvature of the
potential well, which is described by the Morse function. The
C00

0 term defines the long-range behavior of the potential, and
controls the attractive part of interaction. A cubic spline function

with coefficientsbi which ensure the continuity of the potential
and of the first derivatives at the match pointsR1 andR2, covers
the range betweenR1 andR2.

For theV02
2 term, which represents the interaction anisotropy

associated with the alignment of the open-shell atom, we have
adopted the functional form

where the exponential decay describes the variation of overlap
effects of the half-filled orbital, dominant at short range, and
the second term corresponds to the anisotropy of the long-range
attraction.

All the parameters ofV00
0 andV02

2 , given in Tables 1 and 2,
have been obtained from the analysis of scattering cross section
data8,10 (see text).

The following parametrization has been chosen for theV20
2

term, which describes the effect of molecular anisotropy on a
spherical atom

where the exponential term has been fixed on the basis of the
experimental results obtained for the systems H2-Ar (in the
case of the chlorine) e H2-Ne (in the case of the fluorine).53,54

The parameterC20
2 can be expressed as a function of the

TABLE 1: Parameters for the V00
0 (R) Radial Coefficients

coefficient F-H2 Cl-H2

V00
0 Rm (Å) 3.34 3.70

ε (meV) 4.12 5.70
âm 6.30 6.30
C00

0 (meV Å6) 7.52× 103 2.60× 104

R1 3.71 4.07
R2 5.01 5.92
b1 -0.7501 -0.7815
b2 1.6275 1.3511
b3 -3.9039 -3.5710
b4 2.3440 3.3269

TABLE 2: Parameters for the V02
2 (R), V20

2 (R) and V22
4 (R)

Radial Coefficients

coefficient F-H2 Cl-H2

V02
2 A02

2 (meV) 8.11× 105 7.00× 105

R02
2 (Å-1) 3.50 3.00

V02
2 (meV Å6) 9.02× 102 4.70× 103

V20
2 A20

2 (meV) 1.30× 105 4.26× 105

R20
2 (Å-1) 3.50 3.50

C20
2 (meV Å6) 7.00× 102 2.40× 103

V22
4 C22

4 (meV Å5) 854 2245

V00
0 (R) ) -C00

0 R-6

f(R) ) b1 + ( R
Rm

- R
R1

) {b2 + ( R
Rm

- R
R2

) [b3 +

( R
Rm

- R
R1

) b4]} (20)

V02
2 (R) ) -A02

2 exp(-R02
2 ×R) + C02

2 R-6

V20
2 (R) ) A20

2 ×exp{-R20
2 R} - C20

2 R-6

V00
0 (R) ) ε{exp[-2âm( R

Rm
- 1)] - 2exp[-âm( R

Rm
- 1)]}
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polarizability anisotropy of molecular hydrogen.67,70 The em-
ployed parameters are given in Table 2.

Following suggestions given in Refs 65 and 61, parameters
for the V22

0 and V22
2 coefficients, which correspond to correc-

tion terms, have been assumed to be the same as those defining
the exponential part of the termV20

2 (R)

The quadrupole-quadrupole interaction termV22
4 takes the

known analytical expression

whereQ1 andQ2 represent the quadrupole momentum of the
open-shell atom and of the diatomic molecule, respectively, and
k is a normalization constant depending on the adopted spherical
harmonic expansion. For an atom with electronic configuration
p5, the quadrupole moment can be evaluated ase 〈ra

2〉,45 where
e is the electron charge andra is the mean square radius of the
outer orbitals. The data are reported in Table 2.
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